Package: adace 1.0.2

adace: Estimator of the Adherer Average Causal Effect

Estimate the causal treatment effect for subjects that can adhere to one or both of the treatments. Given longitudinal data with missing observations, consistent causal effects are calculated. Unobserved potential outcomes are estimated through direct integration as described in: Qu et al., (2019) <doi:10.1080/19466315.2019.1700157> and Zhang et. al., (2021) <doi:10.1080/19466315.2021.1891965>.

Authors:Jiaxun Chen [aut], Rui Jin [aut], Yongming Qu [aut], Run Zhuang [aut, cre], Ying Zhang [aut], Eli Lilly and Company [cph]

adace_1.0.2.tar.gz
adace_1.0.2.zip(r-4.5)adace_1.0.2.zip(r-4.4)adace_1.0.2.zip(r-4.3)
adace_1.0.2.tgz(r-4.4-any)adace_1.0.2.tgz(r-4.3-any)
adace_1.0.2.tar.gz(r-4.5-noble)adace_1.0.2.tar.gz(r-4.4-noble)
adace_1.0.2.tgz(r-4.4-emscripten)adace_1.0.2.tgz(r-4.3-emscripten)
adace.pdf |adace.html
adace/json (API)
NEWS

# Install 'adace' in R:
install.packages('adace', repos = c('https://zhuangr.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 2 scripts 284 downloads 4 exports 12 dependencies

Last updated 1 years agofrom:9607f71848. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 21 2024
R-4.5-winNOTENov 21 2024
R-4.5-linuxNOTENov 21 2024
R-4.4-winNOTENov 21 2024
R-4.4-macNOTENov 21 2024
R-4.3-winOKNov 21 2024
R-4.3-macOKNov 21 2024

Exports:est_S_Plus_Plus_MethodAest_S_Plus_Plus_MethodBest_S_Star_Plus_MethodAest_S_Star_Plus_MethodB

Dependencies:cligluelifecyclemagrittrplyrpracmaRcppreshape2rlangstringistringrvctrs